metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(4-carboxy-2-ethyl-1*H*-imidazole-5-carboxylato- $\kappa^2 N^3$, O^4)manganese(II) *N*,*N*-dimethylformamide disolvate

Gang Zhang^a* and Yong Wang^b

^aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, People's Republic of China, and ^bDepartment of Chemical Engineering, Henan Polytechnic Institute, Nanyang, 473009, People's Republic of China

Correspondence e-mail: zhanghn1010@163.com

Received 18 May 2011; accepted 26 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.096; data-to-parameter ratio = 13.4.

In the title compound, $[Mn(C_7H_7N_2O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$, the central Mn^{II} ion, located on an inversion center, is hexacoordinated by four O atoms from two water molecules and two carboxylate groups, and two N atoms from two 4carboxy-2-ethyl-1*H*-imidazole-5-carboxylate anions in a slightly distorted octahedral environment. The complex molecules and solvent molecules are connected *via* N-H···O and O-H···O hydrogen bonds into a two-dimensional polymeric structure parallel to (001).

Related literature

For coordination polymers built from 2-ethyl-4,5-imidazoledicarboxylic acid, see: Li *et al.* (2011); Wang *et al.* (2008); Zhang *et al.* (2010). For the structure of the analogous Mn^{II} complex with a 5-carboxy-2-ethyl-1H-imidazole-4-carboxylate ligand, see: Yan *et al.* (2010).

Experimental

Crystal data

[Mn(C₇H₇N₂O₄)₂(H₂O)₂]-- $\beta = 77.780 \ (1)^{\circ}$ 2C₃H₇NO $\gamma = 70.132 (1)^{\circ}$ $M_r = 603.46$ V = 693.89 (3) Å³ Triclinic, $P\overline{1}$ Z = 1Mo $K\alpha$ radiation a = 7.3246 (2) Å b = 9.0070 (2) Å $\mu = 0.54 \text{ mm}^{-1}$ c = 12.0541 (3) Å T = 296 K $\alpha = 68.841 (1)^{\circ}$ $0.20 \times 0.20 \times 0.18 \; \mathrm{mm}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.899, T_{\rm max} = 0.908$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	
$wR(F^2) = 0.096$	
S = 1.04	
2447 reflections	
182 parameters	

2447 independent reflections 2192 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$

5239 measured reflections

3 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01W - H2W \cdots O1^{i}$ $01W - H1W \cdots O2^{ii}$ $N2 - H2 \cdots O5$ $O3 - H3 \cdots O2$	0.80 0.82 0.86 0.82	1.92 1.96 1.89 1.64	2.707 (2) 2.768 (2) 2.740 (2) 2.462 (2)	165 168 168 179

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge Henan University of Urban Construction for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2378).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295–m296.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662–1666.
- Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.
- Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). *Inorg. Chem.* **49**, 3776–3788.

supplementary materials

Acta Cryst. (2011). E67, m828 [doi:10.1107/S1600536811020071]

Diaquabis(4-carboxy-2-ethyl-1*H*-imidazole-5-carboxylato- $\kappa^2 N^3$, O^4) manganese(II) N, N-dimethyl-formamide disolvate

G. Zhang and Y. Wang

Comment

Self-assembly of supramolecular architectures based on imidazole carboxylate ligands has drawn much attention during recent decades. To the best of our knowledge, coordination polymers based on 2-ethyl-4,5-imidazoledicarboxylate ligand has been reperted only in recent years (Wang *et al.*, 2008; Zhang *et al.*, 2010; Li *et al.*, 2011). Herein we report the title compound obtained by the reaction of manganese chloride with 2-ethyl-4,5-imidazoledicarboxylic acid (H₃EIDC) in a N,N-dimethylformamide solution under hydrothermal conditions.

The title compound, $[Mn(C_7H_7N_2O_4)_2(H_2O)_2].2C_3H_7NO$, depicted in Fig. 1. Each Mn^{II} is coordinated by two terminal water molecules, two nitrogen atoms and two oxygen atoms from two chelating 2-ethyl-4,5-imidazoledicarboxylate ligands, generating a distorted octahedral coordination environment. The *N*,*N*-dimethylformamide molecules are connected to the complex molecule *via* hydrogen bond between N2 and O6 atoms (Table 1). In each H₂EIDC ligand that chelates Mn^{II} ion *via* its N, O atom there is a strong hydrogen bond between the carboxylic and carboxylate groups.

A two-dimensional suramolecular structure is consolidated by intermolecular hydrogen-bonding interactions (N—H…O and O—H…O).

The structure of the title compound is very similar to that formed by 2-propyl-4,5-imidazoledicarboxylate ligand with Mn(II) (Yan *et al.*, 2010).

Experimental

A mixture of MnCl₂ (0.5 mmol, 0.06 g) and 2-ethyl-1*H*-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.95 g) in 15 ml of DMF solution was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 4 days, and then cooled to room temperature at a rate of 5 K h^{-1} . Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with O—H = 0.82 Å and $U_{iso}(H) = 1.5 U_{eq}(O)$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C, N)$. H atoms of the water molecule were located in a difference Fourier map and refined as riding with an O—H distance restraint of 0.84 (1) Å, with $U_{iso}(H) = 1.5 U_{eq}$.

Figures

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids [symmetry codes: (i) 2 - x, -y, -z.]

$Diaquabis (4-carboxy-2-ethyl-1 H-imidazole-5-carboxylato-\ \kappa^2 N^3, O^4) manganese (II) \ N, N-dimethyl formamide disolvate$

Crystal data

$[Mn(C_7H_7N_2O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$	Z = 1
$M_r = 603.46$	F(000) = 315
Triclinic, <i>P</i> T	$D_{\rm x} = 1.444 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.3246 (2) Å	Cell parameters from 5837 reflections
b = 9.0070 (2) Å	$\theta = 2.8 - 27.9^{\circ}$
c = 12.0541 (3) Å	$\mu = 0.54 \text{ mm}^{-1}$
$\alpha = 68.841 \ (1)^{\circ}$	T = 296 K
$\beta = 77.780 \ (1)^{\circ}$	Block, colorless
$\gamma = 70.132 \ (1)^{\circ}$	$0.20\times0.20\times0.18~mm$
$V = 693.89 (3) \text{ Å}^3$	

Data collection

Bruker APEXII area-detector diffractometer	2447 independent reflections
Radiation source: fine-focus sealed tube	2192 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.017$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.899, \ T_{\max} = 0.908$	$k = -10 \rightarrow 10$
5239 measured reflections	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.096$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.2406P]$ where $P = (F_o^2 + 2F_c^2)/3$
2447 reflections	$(\Delta/\sigma)_{max} < 0.001$

182 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Mn11.00000.00000.00000.03597 (17)O10.5096 (2)0.68752 (18)0.13763 (14)0.0455 (4)O20.6923 (2)0.70548 (17)-0.03711 (13)0.0431 (4)O30.8948 (3)0.52116 (18)-0.15377 (14)0.0483 (4)H30.82840.5834-0.11540.072*O41.0038 (2)-0.25098 (18)0.12795 (13)0.0420 (4)O50.3937 (3)0.3980 (3)0.39973 (17)0.0701 (6)N10.8058 (2)0.17558 (19)0.09645 (15)0.0341 (4)N20.6175 (3)0.3399 (2)0.19823 (15)0.032 (4)H20.54130.37180.25540.043*N30.2062 (3)0.5787 (3)0.49596 (18)0.0519 (5)C10.6958 (3)0.1811 (3)0.19781 (18)0.0387 (5)C20.6797 (3)0.4415 (2)0.09255 (17)0.0298 (4)C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6B0.70800.03220.36930.071*H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7B0.4466-0.06200.39800.151*H7B0.4466-0.06200.39800.151* <th></th> <th>x</th> <th>у</th> <th>Ζ</th> <th>$U_{\rm iso}*/U_{\rm eq}$</th>		x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1 0.5096 (2) 0.68752 (18) 0.13763 (14) 0.0455 (4) O2 0.6923 (2) 0.70548 (17) -0.03711 (13) 0.0431 (4) O3 0.8948 (3) 0.52116 (18) -0.15377 (14) 0.0483 (4) H3 0.8284 0.5834 -0.1154 0.072* O4 1.0038 (2) -0.25098 (18) 0.12795 (13) 0.0420 (4) O5 0.3937 (3) 0.3980 (3) 0.39973 (17) 0.0701 (6) N1 0.8058 (2) 0.17558 (19) 0.09645 (15) 0.0341 (4) N2 0.6175 (3) 0.3399 (2) 0.19823 (15) 0.032 (4) N3 0.2062 (3) 0.5787 (3) 0.49596 (18) 0.0519 (5) C1 0.6958 (3) 0.1811 (3) 0.19781 (18) 0.0387 (5) C2 0.6797 (3) 0.4415 (2) 0.09255 (17) 0.0298 (4) C3 0.7965 (3) 0.3374 (2) 0.0298 (17) 0.0329 (4) C4 0.6210 (3) 0.6249 (2) 0.06428 (18) 0.0337 (4) C5 0.9031 (3)	Mn1	1.0000	0.0000	0.0000	0.03597 (17)
02 0.6923 (2) 0.70548 (17) -0.03711 (13) 0.0431 (4) 03 0.8948 (3) 0.52116 (18) -0.15377 (14) 0.0483 (4) $H3$ 0.8284 0.5834 -0.1154 $0.072*$ 04 1.0038 (2) -0.25098 (18) 0.12795 (13) 0.0420 (4) 05 0.3937 (3) 0.3980 (3) 0.39973 (17) 0.0701 (6) $N1$ 0.8058 (2) 0.17558 (19) 0.09645 (15) 0.0341 (4) $N2$ 0.6175 (3) 0.3399 (2) 0.19823 (15) 0.0362 (4) $H2$ 0.5413 0.3718 0.2554 $0.043*$ $N3$ 0.2062 (3) 0.5787 (3) 0.49596 (18) 0.0519 (5) $C1$ 0.6958 (3) 0.1811 (3) 0.19781 (18) 0.0387 (5) $C2$ 0.6797 (3) 0.4415 (2) 0.02255 (17) 0.0292 (4) $C4$ 0.6210 (3) 0.6249 (2) 0.06428 (18) 0.0337 (4) $C5$ 0.9031 (3) 0.3697 (2) -0.09070 (17) 0.0330 (4) $C6$ 0.6624 (4) 0.0344 (3) 0.2986 (2) 0.0594 (7) $H6A$ 0.7400 -0.0656 0.2792 $0.071*$ $C7$ 0.4567 (6) 0.0304 (5) 0.3278 (4) 0.1004 (13) $H7A$ 0.3757 0.1320 0.3423 $0.151*$ $H7B$ 0.4466 -0.0620 0.3980 $0.51*$ $H7B$ 0.4466 -0.0620 0.3980 $0.51*$ $H7C$ 0.4145 0.0187 0.2620 0.15	01	0.5096 (2)	0.68752 (18)	0.13763 (14)	0.0455 (4)
O3 0.8948 (3) 0.52116 (18) -0.15377 (14) 0.0483 (4) H3 0.8284 0.5834 -0.1154 0.072* O4 1.0038 (2) -0.25098 (18) 0.12795 (13) 0.0420 (4) O5 0.3937 (3) 0.3980 (3) 0.39973 (17) 0.0701 (6) N1 0.8058 (2) 0.17558 (19) 0.09645 (15) 0.0341 (4) N2 0.6175 (3) 0.3399 (2) 0.19823 (15) 0.0362 (4) H2 0.5413 0.3718 0.2554 0.043* N3 0.2062 (3) 0.5787 (3) 0.49596 (18) 0.0519 (5) C1 0.6958 (3) 0.1811 (3) 0.19781 (18) 0.0387 (5) C2 0.6797 (3) 0.4415 (2) 0.02255 (17) 0.0298 (4) C3 0.7965 (3) 0.3374 (2) 0.02988 (17) 0.0292 (4) C4 0.6210 (3) 0.6249 (2) 0.06428 (18) 0.0337 (4) C5 0.9031 (3) 0.3697 (2) -0.09070 (17) 0.0330 (4) C6 0.6624 (4) 0.0344 (3) </td <td>O2</td> <td>0.6923 (2)</td> <td>0.70548 (17)</td> <td>-0.03711 (13)</td> <td>0.0431 (4)</td>	O2	0.6923 (2)	0.70548 (17)	-0.03711 (13)	0.0431 (4)
H30.82840.5834-0.11540.072*O41.0038 (2)-0.25098 (18)0.12795 (13)0.0420 (4)O50.3937 (3)0.3980 (3)0.39973 (17)0.0701 (6)N10.8058 (2)0.17558 (19)0.09645 (15)0.0341 (4)N20.6175 (3)0.3399 (2)0.19823 (15)0.0362 (4)H20.54130.37180.25540.043*N30.2062 (3)0.5787 (3)0.49596 (18)0.0519 (5)C10.6958 (3)0.1811 (3)0.19781 (18)0.0387 (5)C20.6797 (3)0.4415 (2)0.09255 (17)0.0292 (4)C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*H8B0.08220.34540.60290.115*H8B0.08220.45080.64640.115*H8B0.08220.45080.64640.15*H8C0.27480.4761 <td< td=""><td>O3</td><td>0.8948 (3)</td><td>0.52116 (18)</td><td>-0.15377 (14)</td><td>0.0483 (4)</td></td<>	O3	0.8948 (3)	0.52116 (18)	-0.15377 (14)	0.0483 (4)
O4 $1.0038 (2)$ $-0.25098 (18)$ $0.12795 (13)$ $0.0420 (4)$ $O5$ $0.3937 (3)$ $0.3980 (3)$ $0.39973 (17)$ $0.0701 (6)$ $N1$ $0.8058 (2)$ $0.17558 (19)$ $0.09645 (15)$ $0.0341 (4)$ $N2$ $0.6175 (3)$ $0.3399 (2)$ $0.19823 (15)$ $0.0362 (4)$ $H2$ 0.5413 0.3718 0.2554 $0.043*$ $N3$ $0.2062 (3)$ $0.5787 (3)$ $0.49596 (18)$ $0.0519 (5)$ $C1$ $0.6958 (3)$ $0.1811 (3)$ $0.19781 (18)$ $0.0387 (5)$ $C2$ $0.6797 (3)$ $0.4415 (2)$ $0.09255 (17)$ $0.02928 (4)$ $C3$ $0.7965 (3)$ $0.3374 (2)$ $0.02988 (17)$ $0.2922 (4)$ $C4$ $0.6210 (3)$ $0.6249 (2)$ $0.06428 (18)$ $0.0337 (4)$ $C5$ $0.9031 (3)$ $0.3697 (2)$ $-0.09070 (17)$ $0.0330 (4)$ $C6$ $0.6624 (4)$ $0.0344 (3)$ $0.2986 (2)$ $0.0594 (7)$ $H6A$ 0.7410 -0.0656 0.2792 $0.071*$ $H6B$ 0.7080 0.0322 0.3693 $0.071*$ $C7$ $0.4567 (6)$ $0.0304 (5)$ $0.3278 (4)$ $0.1004 (13)$ $H7A$ 0.3757 0.1320 0.3423 $0.151*$ $H7B$ 0.4466 -0.0620 0.3980 $0.151*$ $H7E$ 0.4466 -0.0620 0.3980 $0.151*$ $H7E$ 0.4262 0.3454 0.6029 $0.115*$ $H8B$ 0.0822 0.4508 0.6464 $0.115*$ <td< td=""><td>H3</td><td>0.8284</td><td>0.5834</td><td>-0.1154</td><td>0.072*</td></td<>	H3	0.8284	0.5834	-0.1154	0.072*
O50.3937 (3)0.3980 (3)0.39973 (17)0.0701 (6)N10.8058 (2)0.17558 (19)0.09645 (15)0.0341 (4)N20.6175 (3)0.3399 (2)0.19823 (15)0.0362 (4)H20.54130.37180.25540.043*N30.2062 (3)0.5787 (3)0.49596 (18)0.0519 (5)C10.6958 (3)0.1811 (3)0.19781 (18)0.0387 (5)C20.6797 (3)0.4415 (2)0.09255 (17)0.0298 (4)C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*K80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*	O4	1.0038 (2)	-0.25098 (18)	0.12795 (13)	0.0420 (4)
N10.8058 (2)0.17558 (19)0.09645 (15)0.0341 (4)N20.6175 (3)0.3399 (2)0.19823 (15)0.0362 (4)H20.54130.37180.25540.043*N30.2062 (3)0.5787 (3)0.49596 (18)0.0519 (5)C10.6958 (3)0.1811 (3)0.19781 (18)0.0387 (5)C20.6797 (3)0.4415 (2)0.09255 (17)0.0298 (4)C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*K80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	05	0.3937 (3)	0.3980 (3)	0.39973 (17)	0.0701 (6)
N20.6175 (3)0.3399 (2)0.19823 (15)0.0362 (4)H20.54130.37180.25540.043*N30.2062 (3)0.5787 (3)0.49596 (18)0.0519 (5)C10.6958 (3)0.1811 (3)0.19781 (18)0.0387 (5)C20.6797 (3)0.4415 (2)0.09255 (17)0.0298 (4)C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	N1	0.8058 (2)	0.17558 (19)	0.09645 (15)	0.0341 (4)
H2 0.5413 0.3718 0.2554 $0.043*$ N3 0.2062 (3) 0.5787 (3) 0.49596 (18) 0.0519 (5)C1 0.6958 (3) 0.1811 (3) 0.19781 (18) 0.0387 (5)C2 0.6797 (3) 0.4415 (2) 0.09255 (17) 0.0298 (4)C3 0.7965 (3) 0.3374 (2) 0.02988 (17) 0.0292 (4)C4 0.6210 (3) 0.6249 (2) 0.06428 (18) 0.0337 (4)C5 0.9031 (3) 0.3697 (2) -0.09070 (17) 0.0330 (4)C6 0.6624 (4) 0.0344 (3) 0.2986 (2) 0.0594 (7)H6A 0.7410 -0.0656 0.2792 $0.071*$ H6B 0.7080 0.0322 0.3693 $0.071*$ C7 0.4567 (6) 0.0304 (5) 0.3278 (4) 0.1004 (13)H7A 0.3757 0.1320 0.3423 $0.151*$ H7B 0.4466 -0.0620 0.3980 $0.151*$ H7C 0.4145 0.0187 0.2620 $0.151*$ H8A 0.2852 0.3454 0.6029 $0.115*$ H8B 0.0822 0.4508 0.6464 $0.115*$ H8C 0.2748 0.4761 0.6634 $0.115*$ C9 0.1012 (6) 0.7462 (5) 0.4934 (4) 0.1007 (13)	N2	0.6175 (3)	0.3399 (2)	0.19823 (15)	0.0362 (4)
N30.2062 (3)0.5787 (3)0.49596 (18)0.0519 (5)C10.6958 (3)0.1811 (3)0.19781 (18)0.0387 (5)C20.6797 (3)0.4415 (2)0.09255 (17)0.0298 (4)C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*K70.41450.01870.26200.151*K80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	H2	0.5413	0.3718	0.2554	0.043*
C10.6958 (3)0.1811 (3)0.19781 (18)0.0387 (5)C20.6797 (3)0.4415 (2)0.09255 (17)0.0298 (4)C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*K70.41450.01870.26200.151*K80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	N3	0.2062 (3)	0.5787 (3)	0.49596 (18)	0.0519 (5)
C2 $0.6797 (3)$ $0.4415 (2)$ $0.09255 (17)$ $0.0298 (4)$ C3 $0.7965 (3)$ $0.3374 (2)$ $0.02988 (17)$ $0.0292 (4)$ C4 $0.6210 (3)$ $0.6249 (2)$ $0.06428 (18)$ $0.0337 (4)$ C5 $0.9031 (3)$ $0.3697 (2)$ $-0.09070 (17)$ $0.0330 (4)$ C6 $0.6624 (4)$ $0.0344 (3)$ $0.2986 (2)$ $0.0594 (7)$ H6A 0.7410 -0.0656 0.2792 $0.071*$ H6B 0.7080 0.0322 0.3693 $0.071*$ C7 $0.4567 (6)$ $0.0304 (5)$ $0.3278 (4)$ $0.1004 (13)$ H7A 0.3757 0.1320 0.3423 $0.151*$ H7B 0.4466 -0.0620 0.3980 $0.151*$ K8 $0.2127 (5)$ $0.4520 (5)$ $0.6120 (2)$ $0.0766 (9)$ H8A 0.2852 0.3454 0.6029 $0.115*$ H8B 0.0822 0.4508 0.6464 $0.115*$ H8C 0.2748 0.4761 $0.6634 (4)$ $0.1007 (13)$	C1	0.6958 (3)	0.1811 (3)	0.19781 (18)	0.0387 (5)
C30.7965 (3)0.3374 (2)0.02988 (17)0.0292 (4)C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	C2	0.6797 (3)	0.4415 (2)	0.09255 (17)	0.0298 (4)
C40.6210 (3)0.6249 (2)0.06428 (18)0.0337 (4)C50.9031 (3)0.3697 (2)-0.09070 (17)0.0330 (4)C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	C3	0.7965 (3)	0.3374 (2)	0.02988 (17)	0.0292 (4)
C5 $0.9031(3)$ $0.3697(2)$ $-0.09070(17)$ $0.0330(4)$ C6 $0.6624(4)$ $0.0344(3)$ $0.2986(2)$ $0.0594(7)$ H6A 0.7410 -0.0656 0.2792 $0.071*$ H6B 0.7080 0.0322 0.3693 $0.071*$ C7 $0.4567(6)$ $0.0304(5)$ $0.3278(4)$ $0.1004(13)$ H7A 0.3757 0.1320 0.3423 $0.151*$ H7B 0.4466 -0.0620 0.3980 $0.151*$ H7C 0.4145 0.0187 0.2620 $0.151*$ C8 $0.2127(5)$ $0.4520(5)$ $0.6120(2)$ $0.0766(9)$ H8A 0.2852 0.3454 0.6029 $0.115*$ H8B 0.0822 0.4508 0.6464 $0.115*$ H8C 0.2748 0.4761 0.6634 $0.1007(13)$	C4	0.6210 (3)	0.6249 (2)	0.06428 (18)	0.0337 (4)
C60.6624 (4)0.0344 (3)0.2986 (2)0.0594 (7)H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*K90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	C5	0.9031 (3)	0.3697 (2)	-0.09070 (17)	0.0330 (4)
H6A0.7410-0.06560.27920.071*H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.1007 (13)	C6	0.6624 (4)	0.0344 (3)	0.2986 (2)	0.0594 (7)
H6B0.70800.03220.36930.071*C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.1007 (13)	H6A	0.7410	-0.0656	0.2792	0.071*
C70.4567 (6)0.0304 (5)0.3278 (4)0.1004 (13)H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	H6B	0.7080	0.0322	0.3693	0.071*
H7A0.37570.13200.34230.151*H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	C7	0.4567 (6)	0.0304 (5)	0.3278 (4)	0.1004 (13)
H7B0.4466-0.06200.39800.151*H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	H7A	0.3757	0.1320	0.3423	0.151*
H7C0.41450.01870.26200.151*C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	H7B	0.4466	-0.0620	0.3980	0.151*
C80.2127 (5)0.4520 (5)0.6120 (2)0.0766 (9)H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	H7C	0.4145	0.0187	0.2620	0.151*
H8A0.28520.34540.60290.115*H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	C8	0.2127 (5)	0.4520 (5)	0.6120 (2)	0.0766 (9)
H8B0.08220.45080.64640.115*H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	H8A	0.2852	0.3454	0.6029	0.115*
H8C0.27480.47610.66340.115*C90.1012 (6)0.7462 (5)0.4934 (4)0.1007 (13)	H8B	0.0822	0.4508	0.6464	0.115*
C9 0.1012 (6) 0.7462 (5) 0.4934 (4) 0.1007 (13)	H8C	0.2748	0.4761	0.6634	0.115*
	С9	0.1012 (6)	0.7462 (5)	0.4934 (4)	0.1007 (13)
H9A 0.0953 0.8174 0.4120 0.151*	H9A	0.0953	0.8174	0.4120	0.151*
H9B0.16680.78290.53500.151*	H9B	0.1668	0.7829	0.5350	0.151*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H9C	-0.0288	0.7505	0.5315	0.151*
C10	0.2976 (4)	0.5403 (4)	0.3999 (2)	0.0603 (7)
H10	0.2897	0.6254	0.3272	0.072*
O1W	0.7541 (2)	0.0082 (2)	-0.07777 (18)	0.0579 (5)
H1W	0.7407	-0.0852	-0.0560	0.087*
H2W	0.6611	0.0895	-0.0898	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0376 (3)	0.0226 (2)	0.0446 (3)	-0.00243 (18)	0.00243 (19)	-0.01653 (19)
01	0.0533 (9)	0.0297 (8)	0.0465 (9)	0.0017 (7)	0.0006 (7)	-0.0197 (7)
O2	0.0565 (9)	0.0226 (7)	0.0465 (9)	-0.0090 (7)	0.0017 (7)	-0.0127 (7)
O3	0.0653 (11)	0.0272 (8)	0.0415 (8)	-0.0125 (7)	0.0157 (7)	-0.0109 (7)
O4	0.0489 (9)	0.0306 (8)	0.0404 (8)	-0.0073 (7)	0.0118 (7)	-0.0173 (6)
O5	0.0795 (13)	0.0729 (14)	0.0570 (11)	-0.0180 (11)	0.0185 (10)	-0.0372 (10)
N1	0.0374 (9)	0.0228 (8)	0.0362 (9)	-0.0041 (7)	0.0038 (7)	-0.0110 (7)
N2	0.0416 (9)	0.0293 (9)	0.0313 (9)	-0.0032 (7)	0.0044 (7)	-0.0131 (7)
N3	0.0464 (11)	0.0616 (13)	0.0494 (12)	-0.0141 (10)	0.0077 (9)	-0.0278 (10)
C1	0.0434 (12)	0.0274 (11)	0.0364 (11)	-0.0047 (9)	0.0022 (9)	-0.0086 (9)
C2	0.0311 (10)	0.0254 (10)	0.0317 (10)	-0.0042 (8)	-0.0032 (8)	-0.0112 (8)
C3	0.0304 (9)	0.0224 (9)	0.0331 (10)	-0.0047 (7)	-0.0007 (8)	-0.0108 (8)
C4	0.0360 (10)	0.0267 (10)	0.0382 (11)	-0.0031 (8)	-0.0064 (9)	-0.0141 (9)
C5	0.0358 (10)	0.0265 (10)	0.0346 (10)	-0.0080 (8)	0.0020 (8)	-0.0114 (8)
C6	0.0736 (18)	0.0351 (13)	0.0485 (14)	-0.0099 (12)	0.0116 (12)	-0.0043 (11)
C7	0.109 (3)	0.093 (3)	0.088 (2)	-0.064 (2)	-0.007 (2)	0.014 (2)
C8	0.091 (2)	0.096 (2)	0.0454 (15)	-0.0368 (19)	0.0138 (15)	-0.0275 (16)
C9	0.085 (2)	0.084 (3)	0.129 (3)	-0.006 (2)	0.011 (2)	-0.058 (3)
C10	0.0607 (16)	0.072 (2)	0.0449 (14)	-0.0210 (14)	0.0073 (12)	-0.0204 (13)
O1W	0.0502 (9)	0.0266 (8)	0.0991 (14)	-0.0010 (7)	-0.0228 (9)	-0.0230 (9)

Geometric parameters (Å, °)

2.1683 (17)	C1—C6	1.489 (3)
2.1683 (17)	C2—C3	1.369 (3)
2.2244 (15)	C2—C4	1.484 (3)
2.2244 (15)	C3—C5	1.475 (3)
2.2302 (15)	C5—O4 ⁱ	1.238 (2)
2.2302 (15)	C6—C7	1.483 (5)
1.228 (2)	С6—Н6А	0.9700
1.281 (3)	С6—Н6В	0.9700
1.287 (2)	С7—Н7А	0.9600
0.8200	С7—Н7В	0.9600
1.238 (2)	С7—Н7С	0.9600
1.235 (4)	C8—H8A	0.9600
1.321 (3)	C8—H8B	0.9600
1.373 (2)	C8—H8C	0.9600
1.350 (3)	С9—Н9А	0.9600
	2.1683 (17) 2.1683 (17) 2.2244 (15) 2.2244 (15) 2.2302 (15) 2.2302 (15) 1.228 (2) 1.281 (3) 1.287 (2) 0.8200 1.238 (2) 1.235 (4) 1.321 (3) 1.373 (2) 1.350 (3)	$2.1683 (17)$ $C1C6$ $2.1683 (17)$ $C2C3$ $2.2244 (15)$ $C2C4$ $2.2244 (15)$ $C3C5$ $2.2302 (15)$ $C5O4^i$ $2.2302 (15)$ $C6C7$ $1.228 (2)$ $C6H6A$ $1.281 (3)$ $C6H6B$ $1.287 (2)$ $C7H7A$ 0.8200 $C7H7B$ $1.238 (2)$ $C6H8A$ $1.321 (3)$ $C8H8B$ $1.373 (2)$ $C8H8C$ $1.350 (3)$ $C9H9A$

N2—C2	1.365 (3)	С9—Н9В		0.9600
N2—H2	0.8600	С9—Н9С		0.9600
N3—C10	1.309 (3)	C10—H10		0.9300
N3—C9	1.434 (4)	O1W—H1W		0.8200
N3—C8	1.449 (4)	O1W—H2W		0.8047
O1W ⁱ —Mn1—O1W	180.00 (10)	O1—C4—C2		118.76 (18)
O1W ⁱ —Mn1—O4 ⁱ	90.79 (6)	O2—C4—C2		116.00 (17)
O1W—Mn1—O4 ⁱ	89.21 (6)	O4 ⁱ —C5—O3		122.34 (18)
O1W ⁱ —Mn1—O4	89.21 (6)	O4 ⁱ —C5—C3		119.06 (18)
O1W—Mn1—O4	90.79 (6)	O3—C5—C3		118.59 (17)
O4 ⁱ —Mn1—O4	180.00 (11)	C7—C6—C1		115.0 (2)
O1W ⁱ —Mn1—N1 ⁱ	90.95 (6)	С7—С6—Н6А		108.5
O1W—Mn1—N1 ⁱ	89.05 (6)	С1—С6—Н6А		108.5
O4 ⁱ —Mn1—N1 ⁱ	104.47 (5)	С7—С6—Н6В		108.5
$O4$ — $Mn1$ — $N1^{i}$	75.53 (5)	C1—C6—H6B		108.5
O1W ⁱ —Mn1—N1	89.05 (6)	H6A—C6—H6B		107.5
O1W—Mn1—N1	90.95 (6)	С6—С7—Н7А		109.5
O4 ⁱ —Mn1—N1	75.53 (5)	С6—С7—Н7В		109.5
O4—Mn1—N1	104.47 (5)	Н7А—С7—Н7В		109.5
N1 ⁱ —Mn1—N1	180.00 (7)	С6—С7—Н7С		109.5
С5—О3—Н3	109.5	Н7А—С7—Н7С		109.5
C5 ⁱ —O4—Mn1	115.88 (12)	Н7В—С7—Н7С		109.5
C1—N1—C3	106.19 (16)	N3—C8—H8A		109.5
C1—N1—Mn1	142.61 (14)	N3—C8—H8B		109.5
C3—N1—Mn1	111.18 (12)	H8A—C8—H8B		109.5
C1—N2—C2	108.45 (17)	N3—C8—H8C		109.5
C1—N2—H2	125.8	H8A—C8—H8C		109.5
C2—N2—H2	125.8	H8B-C8-H8C		109.5
C10—N3—C9	122.6 (3)	N3—C9—H9A		109.5
C10—N3—C8	120.8 (3)	N3—C9—H9B		109.5
C9—N3—C8	116.6 (3)	Н9А—С9—Н9В		109.5
N1-C1-N2	110.34 (18)	N3—C9—H9C		109.5
N1—C1—C6	125.5 (2)	Н9А—С9—Н9С		109.5
N2—C1—C6	124.14 (19)	Н9В—С9—Н9С		109.5
N2—C2—C3	105.31 (17)	O5-C10-N3		124.1 (3)
N2—C2—C4	122.29 (17)	O5-C10-H10		118.0
C3—C2—C4	132.40 (18)	N3-C10-H10		118.0
C2—C3—N1	109.70 (16)	Mn1—O1W—H1W		109.5
$C_2 - C_3 - C_5$	132.07 (18)	Mn1—O1W—H2W		120.7
N1-C3-C5	118.21 (16)	H1W - O1W - H2W		120.8
01-C4-02	125.24 (19)	0111 11211		
Symmetry codes: (i) $-r+2 -v -z$	120.2 (17)			
S_{j}				
Hydrogen-bond geometry (Å, °)				
D—H····A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A

supplementary materials

O1W—H2W···O1 ⁱⁱ	0.80	1.92	2.707 (2)	165
O1W—H1W···O2 ⁱⁱⁱ	0.82	1.96	2.768 (2)	168
N2—H2…O5	0.86	1.89	2.740 (2)	168
O3—H3…O2	0.82	1.64	2.462 (2)	179
Symmetry codes: (ii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (iii) <i>x</i> , <i>y</i> -1, <i>z</i> .				

Fig. 1